
Function reference
-
albrecht2019exp1 - Test data for fitting the Exemplar-based judgment model
-
anova(<cm>) - Analysis of Deviance for Cogscimodel Fits
-
baseline_const_c()baseline_const_d()baseline_mean_c()baseline_mean_d() - Baseline models
-
bayes_beta_c()bayes_beta_d()bayes_dirichlet_d()bayes_dirichlet_c()bayes() - Bayesian Inference Cognitive Model
-
softmax()epsilon_greedy()epsilon()luce()argmax() - Choicerule Models (action-selection rules)
-
chr_as_rhs() - Convert a character to formula
-
Cmcm-class - The R6 class underlying all "cm" (cognitive model) objects 'Cm$new(formula, data, parspace)'
-
cm_choicerules() - Show the Choicerules for Discrete Cognitive Models
-
cm_options() - Advanced Options for Cognitive Models
-
cm_solvers() - Show the Optimization Solvers for Cognitive Models
-
cognitivemodel() - Add components to a model
-
constraints() - Show the constraints of a cognitive model
-
cpt_d()cpt_c()cpt_mem_d()cpt_mem_c() - Cumulative Prospect Theory Models
-
cpttest - Test data for fitting the Cumulative Prospect Theory, cpt, model
-
.grid() - Make a regular or random grid
-
.solve_grid_constraint() - Adds the parameter that are constrained to the free parameters in the construction of a grid
-
ebm_cpp() - Computes Predictions for the Exemplar-based Models (GCM, EBM)
-
end() - Ends building a cognitivemodel via
+
-
fit() - Estimates free parameters of a cognitvemodel generated via
+
-
fun() - Adds a function to a cognitivemodel via
+
-
getCall(<cm>) - Get the Call to a cognitive model object
-
get_ev() - Gets the expected value of gambles
-
get_p() - Gets the probabilities of gambles
-
get_var() - Gets the variance of gambles
-
get_x() - Gets the outcomes of gambles
-
logLik(<cm>)MSE()RMSE.cm()SSE()SSE() - Computes Various Model Fit Measures
-
hm1988() - Dynamic optimization model for risk-sensitive foraging problems in discrete time
-
npar()nobs()nstim()natt()coef(<cm>) - Information about a cognitive model and the data in it
-
mahalanobis() - Weighted Mahalanobis Distance
-
make_parspace() - Define parameter for cognitive models
-
minkowski() - Weighted Minkowski Distance
-
nosofsky1989 - Test data for fitting the Exemplar-based categorization model
-
nosofsky1989long - Test data for fitting the Exemplar-based categorization model
-
npar() - Number of Parameters, Attributes, and Stimuli
-
parspace() - Show the paramter space of a cognitive model
-
`+`(<cm>) - Adds a component to a cognitivemodel via
+
-
predict(<cm>) - Predictions from Cognitive Models (class cm)
-
print(<csm_constraint>) - Prints the constraints of a cogscimodel object nicely
-
rsenvironment() - Class for risk-sensitive foraging environments
-
shift_d() - Shifting Cognitive Model
-
shortfall_d()shortfall_c() - Shortfall Risky Choice Model
-
shortfalltest - Test data for fitting the Shortfall model
-
shortfall_cpp() - Computes Predictions in the Shortfall Model
-
summary(<cm>) - Summarizes cognitive models
-
threshold()threshold_c()threshold_d() - Threshold Model
-
tversky1992ex - Example data with two risky gambles
-
utility_pow_d()utility_pow_c() - Utility Function Models
-
varG() - Variance of probabilistically-described gambles (without N-1 correction)