
Shifting Cognitive Model
shift.RdFits a model that shifts over time from one value to another value, with the change point in time being a free parameter
shift_d()fits the change point model for discrete responses.
Arguments
- formula
A formula, the variables in
datato be modeled. For example,y ~ x1 + x2models response y as function of shifting fromx1tox2.- data
A data frame, the data to be modeled.
- time
(optional) Variable with the decision time or trial across which the shift occurs; can be a numeric vector, string, or formula. If missing will be set to range from 1 to the number of rows in data.
- fix
(optional) A list with parameter-value pairs of fixed parameters. If missing all free parameters are estimated. If set to
"start"all parameters are fixed to their start values. Model parameter names arec(see details - model parameters).list(c = 1.85)sets parametercequal to 1.85."start"sets all parameters equal to their initial values (estimates none). Useful for building a first test model.
- options
(optional) A list, list entries change the modeling procedure. For example,
list(lb = c(k=0))changes the lower bound of parameter k to 0, orlist(fit_measure = "mse")changes the goodness of fit measure in parameter estimation to mean-squared error, for all options, see cm_options.- discount
(optional) A number, e.g.
10ignores the first ten data rows when fitting parameters and when calculating goodness of fits- ...
other arguments, ignored.
Value
Returns a cognitive model object, which is an object of class cm. A model, that has been assigned to m, can be summarized with summary(m) or anova(m). The parameter space can be viewed using pa. rspace(m), constraints can be viewed using constraints(m).
Details
The model models a shift between two input values over time.
Parameter Space
The model has 1 free parameter:
cthe change point when the shift occurs intimeAdditoinal parameters in
shift_c(): Ifchoicerule = "softmax":tauis the temperature or choice softness, higher values cause more equiprobable choices. Ifchoicerule = "epsilon":epsis the error proportion, higher values cause more errors from maximizing.
See also
Other cognitive models:
Cm,
baseline_const_c(),
bayes(),
choicerules,
cpt,
ebm(),
hm1988(),
shortfall,
threshold,
utility
Author
Jana B. Jarecki, jj@janajarecki.com
Examples
## Make fake data -----------------------------------------------------
D <- data.frame(a = rep(0L,4), b = 1L, y = c(0,0,1,1))
M <- shift_d(~ a + b, D, fix = c(c=1.5))
predict(M)
#> [1] 4.539787e-05 9.999546e-01 1.000000e+00 1.000000e+00